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ABSTRACT

Let R be a commutative ring with identity amd be a unitary (leftfR-module. In this paper we present the
concepts essentially distinguished module and #sfigrdistinguished ring as generalizations oftidiguished module and
distinguished ringM is called essentially distinguish&module provided thadnn, () is an essential sub module Mf
for each maximal idedlof R. Ris calledR-distinguished ring iR as arR-module is distinguished. The basic properties of

such modules (rings) are studied.
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1. INTRODUCTION

Throughout this paper all rings are commutativehwientity. An R-module M is called distinguished if
anny (1) # 0 for each maximal idedl of R, [7]. The notion of distinguished module was idimoed by G. Azumaya in
[7] in establishing a theory of quasi-Frobenius mledin 1996, L. S. Mahmood studied the conceptslisfinguished
module and distinguished ring, [9]. In this papee wtroduce essentially distinguished module andemtally
distinguished ring as a generalization of distisped module and distinguished ring. It turns ouwit tthe class of
essentially distinguished modules (rings) contgirgperly the class of distinguished modules (rings)d that the two
classes are equivalent in certain classes of med{rlags). Many characterizations of such moduled &angs are

established in this work.

Notations: For anR-moduleM and an ideal of R the setanny, (1) ={m &€ M:am =0 foralla € 1} is the
annihilator ofl in M, anng (1) ={r € R:ra =0 for all a € I } is the annihilator of in R, and form € M, anng(m) =

{r € R:rm = 0} is the annihilator ofnin R.
2. ESSENTIALLY DISTINGUISHED MODULES

It is know that a sub module a non-zero sub mobluté anR-moduleM is called essential ¥ n K # 0 for each
non-zero sub modulk of M, equivalentlyN is an essential sub module Mfif for each0 = m € M, there exists € R
such that0 # rm € N, [5]. M is called a uniform module if every sub moduleMfis essential, [5]. We introduce the

following concept:

Definition 2.1. An R-moduleM is called essentially distinguisheddifin,,( 1) is an essential sub module Mdf

(notation ally,anny (1) <, M) for each maximal ide&lof R.
Remarks and Examples 2.2

1. An essentially distinguished module is distingughmit not conversely. For examplg as aZ,-module is
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34 Layla Salman Mohmood & Shaymaa Habeeb Hasan

distinguished but not essentially distinguishe@simn, (2) = (3) %, Zs andann; (3) = (2) %, Z.
2. Auniform module is essentially distinguished iflaanly if it is distinguished.

3. Z,, as aZ;,-module is not essentially distinguished sii@) is a maximal ideal in the ring, butann,, ( 2)=
(6) $e ZIZ-
4. Z,n as aZ,n-module is essentially distinguished for all primemberp and positive integem, Since the ideals of
the ringZ,» are:
@) 2?23 22" 2((p" = (0),but(p) the only maximal ideal ofZ,rand ann;_,(P) =
(pn—l ) <e Zp"-
5. A torsion-free module is not essentially distindngid; in fact it is not distinguished. For instaneach of

Z,Q,Z®Z,Z®Q, ... as aZ-module is not essentially distinguished.

6. Zp~as aZ-module is not distinguished and hence not essintigtinguished, for ifl = (q) be any maximal

Oif p+q
Zgifp=q°

ideal ofZ with q is a prime number, themn; ,(q) = Homy(Z,, Zp=) = {
7. An R-moduleM is essentially distinguished if and onlyaifin,, (1) <, M for each proper ide&lof R.
8. Mis essentially distinguishe®module if and only iM is essentially distinguishe®l/anng ( M )-module.

3. BASIC PROPERTIES OF ESSENTIALLY DISTINGUISHED MO DULES

Proposition 3.1: Let f: M — M be a monomorphism. I/ is essentially distinguished thé is also essentially

distinguished.

Proof: Let | be a maximal ideal oR Themnng(l) <, M. Letk = anng(1), so K <, M and hence
fTY(K)<.,M [6]. We claim thatinny,(I)=f"'(K). Let x€ f7%(K) . ThenxeM and f(x)€ K and
hencg(x)I =0 = f(xI), Butfis a monomorphism implies that = 0, thereforex € ann, (1). Hencg *(K) <

anny ().

Now, Ifx € anny (1), thenxI =0 and f(xI) = f(x)I =0 implies thaf(x) € anny (1) = K, therefore
x € f7Y(K). Thusinny, (1) € f~1(K) Soanny, (1) = f~1(K) <. M which completes the proof.

Corollary 3.2
1. Every non-zero sub module of an essentially dististged module is also essentially distinguished.
2. LetM; = M, be twoR-modules. TheM, is essentially distinguished if and onlyMf, is so.

Lemma 33 Let M; and M, be two Rmodules and | be an ideal of R Then

anny, gm, (1) = anny, (1) @anny, (1).
Proof: Is straightforward and hence is omitted.

Proposition 3.4: Let M; and M, be two essentially distinguishé@modules. TherM;®M, is also essentially

distinguished
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Proof: Letl be a maximal ideal & Then anny (I)<.,M; andinn,(Il)<.M,. Therefore
anny, (1 )®anny, (1) <, M;@®M,, [5]. According to lemma (3.3) we getny, g, () <. M;®M,. HenceM;®M, is

essentially distinguished.

Corollary 3.5: The direct sum of a finite collection of essentiadlistinguishedR-module is also essentially

distinguished.

Proposition 3.6: Let M bea finitely generateB-module ands be a multiplicatively closed subset Rfsuch that
I nS = @ for each prime idedlof R. ThenM is essentially distinguished if and onlyMf; is essentially distinguisheRl;, —

module.

Proof: (=) Let s be a prime ideal aks. Thenl is a prime ideal oR[10]. Henceann, (1) # 0 (by hypothesis).
But M isfinitely generatedimplies thaanny, (1))s = anny(Is)[1]and henceanny (Is) # 0g[1]. On the other hand
anny (1) <, M and according to [12],we get thahn, () <, Ms. ThereforeM; is essentially distinguishefls-

module.

(=) Let | be a prime ideal ofR. Then I; is a prime ideal ofR4[10], and by hypothesis we
haveinny (s ) <. M;. Now, anny (1))s = anny(Is) (since M is finitely generated),

[1].Therefore(anny (1 ))s <. Rsandby [11]ann, (1) <, R, which completes the proof.

Corollary 3.7: Let M be a finitely generate&-module andp be a prime ideal oR. ThenM is essentially

distinguishedk-module if and only if,, is essentially distinguishek, —module.

Now, we discuss essentially distinguishedness ooganerator ring (A ringR is called a cogenerator ring if the

R-moduleRis a cogenerator for MoR; that is everyR-module can be embedded in a direct product ofesopiR).
Proposition 3.8:If Ris a cogenertor ring, then every faithful unifoRmmodule is essentially distinguished.

Proof: Follow from the fact that every faithful module ova cogenerator ring is distinguished [9], and by
(2.1,(2)) the result follows.

Corollary 3.9: If Ris a quasi-Frobenuisring. Then every faithful uniidR-module is essentially distinguished.

Proof: R being quasi-Frobenius implies tHatis a co generator ring [3]. Hence we get the tdsylproposition
(3.8).

Corollary 3.10: If Ris a co generator ring amdl is a faithfulR-module such thak (M)(the injective hull oiM) is

indecomposable theM is essentially distinguished.

Proof: E( M) being indecomposable implies thdtis uniform[8], and then by proposition (3/8))js essentially
distinguished.

Corollary 3.11: If Ris a cogenerator ring amd is a faithfulR-module which has exactly two closed submodules,

thenM is essentially distinguished.

Proof: As M has exactly two closed submodules implies Mas uniform [8], soM is essentially distinguished

by proposition (3.8).
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Corollary 3.12: If Ris acogenertor ring and is a faithful quasi-injective indecomposalienodule, therM is

essentially distinguished.

Proof: Since M is quasi-injective and indecomposable implies thhtis uniform [8]and hence essentially

distinguished by proposition(3.8).

Corollary 3.13: If Ris a cogenerator ring amd be a faithful indecomposable and extend®agodule, therM is

essentially distinguished.

Proof: M being extending and indecomposable gives uniform [15] and according to proposition (3.8) is

essentially distinguished.

Remark 3.14: The conditionR is a cogenerator ring in proposition (3.8) andotiary (3.12) cannot be dropped.
For instanceQ as aZ —module is faithful and uniform, however it is nessentially distinguished in fact it is not
distinguished, note that the rigis not a cogenerator ring. On the other hansl an injective and hence quasi-injective

Z-module, and that it is indecomposable.
4. SOME CHARACTERIZATIONS OF ESSENTIALLY DISTINGUIS HED MODULE

Many interesting characterizations of essentiaidfiniguished modules in certain classes of modateggiven in

this section.

Proposition 4.1: Let M be anR-module. If for each maximal idedl of R, there exists) # m € M such

that(im) <, M andl = anngz(m), therM is essentially distinguished.

Proof: Let| be a maximal ideal d®. By hypothesid = anng(m) for some0 # m € M and(m) <, M. There
for Im = 0 and hencen € anny (1) which implies that{m) < anny (). As (m) <, M givesinny (1) <, M [5].

ThereforeM is essentially distinguished.

Remark 4.2The condition(m) <, M in proposition (4.1) cannot be dropped. For examplas &,-module is
notan essentially distinguished. Note that,_(2) = (3) %, Zs andann;, (3) = (2) %, Ze.

Corollary 4.3: LetMbe an R-module such that(m) <, M for each0 #m € M. Then M is essentially
distinguished if and only if1 is distinguished.

In order to give a partial converse for propositfdri), the following areneeded

Lemma 4.4: Let M be anR-module such thaEndz(M ) =S =R. If Sm < Sn with m,n € M andSm =
{f(m):f €S}, thenRm € Rn .

Proof: Letp: R - S be an isomorphism. For eacl R, ¢(r) = ¢,:M - M and ¢,.(m) = rm for all m € M.
Clearly ¢, € S and¢,.(m) € Sm. Hencegp,(m) € S,, (sinceSm < Sn by hypothesis) Thereforg,(m) = f(n) for some
f €S, and hencg = @(t) for somet € R (since S= R), on the other hand(t) = ¢, givesf(n) = ¢.(n) for alln € M.
Sorm = @,.(m) = @.(n) = tn for allr € R.implies thaRm < Rn

Recall that alr-moduleM is called principally injective if eadR-homomorphismx : Ra — M such thatr € R,
extends tR, [14].And M is called principally quasi- injective if for eaelh € M each homomorphistfi: Rm - M can be

extended to an endomorphisméf [13].
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Proposition 4.5[13]:Let M be anR-module and = Endgz(M). Then the following statements are equivalent:
1. Mis principally quasi- injective.
2. anny(anng(m)) =S, Forallm € M.
3. Ifannz(m) € anngz(n) where m,n € M, then S,, € S,,,.
4. For eachn € M, if a, 8: Rm — M with g is a monomorphism, then there existe S suchthatt o f = .
Now, we present a partial converse for proposiiba).

Proposition 4.6: Let M be a principally quasi-injectiv®-module andEnd, (M) =S = R. If M is essentially

distinguished then for each maximal ideaf R there existsn € M such tha{m) <, M andl = anngz(m).

Proof: Let | be a maximal ideal dR. Then by [11], there exis®# m € M such that = annz(m). It is left to
show thafm) <, M. Let0 #+ x € M. As M is essentially distinguished, theann, (1) <, M,therefore there existse R
such that0 # rx € anny (1). Hencelrx = 0 implies that € anngi(rx ), thereforeanng(m) S anng(rx)and according
to proposition (4.5,(3)) we gétrx € Sm and by lemma (4.4) implies ttRatx € Rm, thereforex € (i) Whichis what we

wanted.

Theorem 4.7 Let M be a principally quasi-injectivB-module such thaEnd,( M ) = R.ThenM is essentially

distinguished if and only if for each maximal idéalf R, there exist® # m € M such tha{m) <, M andl = anngz(m).
Proof: Follows from propositions (4.1) and (4.6).

Corollary 4.8: Let M be a faithful scalar and principally quasi-injeetiR-module. ThenM is essentially

distinguished if and only if for each maximal idéalf R there existsn € M such tha{m) <, M andl = anngz(m).
Proof: M being faithfulR-module giveEndg (M) = R[4]. Hence the result follows from theorem (4.7).

Proposition 4.9:If M is an essentially distinguishéRimodule, then for each maximal iddabf R, ann, (1)

contains a copy of every simpgRemodule.

Proof: Let P be a simpldR-module. TherP =~ R /I for some maximal ideadlof R. M is distinguished gives thit
contains a copy d® [9]. So there exists a monomorphism gay — M. Let0 # x € P and putf(x) = m, with0 # m €
M. Butanny (1) <., M implies there exists € R such that0 = rm € anny (1), rm =rf(x) = f(rx) € anny(1).
henc® = If(rx) = f(Irx), thereforelrx = 0, gives rx € anny (I ).Henc&€0) = (rx) S anny(I). On the other

hand(rx ) < P andP is simple implies th@ = (rx ) € anny () which completes the proof.
A partial converse of proposition (4.9) is establis the following proposition.

Proposition 4.10: Let M be a scalar and principally quasi-injectiRenodule. If for each maximal idealof R,

anny (1) contains a copy of every simgRemodule, therM is essentially distinguished.

Proof: Let| be a maximal ideal dR. By hypothesisann, (1) contains a copy oR/I, soanny (1) # 0 and
henceM is distinguished. We have to show thaty, () <, M. Let 0 # x € anny, (1) and letA be a maximal
submodule oRx. ThenRx/A is a simpleR-module Letf: Rx/A — ann, (1) be a monomorphism. Defing Rx — M by

g(m) = f(m+ A) for all m € Rx. As M is principally quasi-injective implies that thergists a homomorphisrh: M —
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M such thath o i = g. Wherei: Rx —» M is the inclusion homomorphism. On the other hadhds a scalaiR-module
implies that there exists € R such thath(m) = tm for all m € M[2]. Therefor for allm € Rx, g(m) = f(m+ A) =
h(m) = tm. Thustx = f(x + A) # 0. For if f(x + A) = 0 givesx + A = A and hencBx = A which is a contradiction.

Now, tix = g(Ix) = f(Ix + A) = If (x + A) = 0. So, tIx = 0 = Itx implies thattx € anny,( | ) and hence

anny (1) <, M.

Corollary 4.11: Let M be a cyclic and principally quasi-injecti®module. TherM is essentially distinguished if

and only if for each maximal idebbf R, anny, (I )contains a copy of every simgRemodule.

Proof: Follows from the two proposition 4.9, 4.10 and frtme fact that every cyclic module is a scalar nedu
[2].

In the following proposition we introduce a necegseondition for essentially distinguishedness tsng the

concept of injective hull of a module.

Proposition 4.12: Let M be an essentially distinguishdttmodule. Theh (ann, (1)) (the injective hull of

anny, (1))is a cogenerator for MoB-for each maximal idedlof R.

Proof: Let | be a maximal ideal oR Then ann,(I) contains a copy of every simple-module(by
proposition4.10). Butnn, (1) S E(anny (1)), therefor@(annM(I)) contains a copy of every simpiemodule, and

sinceE (anny (1)) is an injectiveR-module, therefor& (anny (1)) is a cogenerator for MoR:{6]
Corollary 4.13: If M is an essentially distinguish&module, therE(M) is a cogenerator for MoR-

Proof: Let | be a maximal ideal &®. Therunny, (1) <, Mand hencE(anny (1)) = E(M)[12], thereforeE(M)

is a cogenerator for MoR-proposition 4.12.

Corollary 4.14: Let M be an essentially distinguish&dmodule, antlbe a maximal ideal dR. Ifanny (1) is an

injectiveR-module, theann,, (I)is acogenerator for MoR-
Proof: Follows from proposition (4.12) and from the fdwatFE (M) = M if and only ifM is injective [6].
A partial converse of proposition (4.12) is proxdd&oposition by the following proposition:

Proposition 4.15:Let M be a scalar (or a cyclic) principally quasi-injeetR-module. If for each maximal idehl

of R, E(anny (1)) is compressible and a cogenerator for MydhenM is essentially distinguished

Proof: Letl be a maximal ideal d®. By hypothesif(annM( 1 )) is a cogenerator for MoB; on the other hand it
is an injectiveR-module implies th@(ann, (1)) contains a copy of every simpRemodule [12]. ButE(annM(I)) is
compressible andnny, (1) < E(anny (1) implies that there exists a monomorphism ga§ (anny (1)) = anny, (1 ).
Thereforenn,, (1) contains a copy of every simpRemodule and according to proposition (4.10)we Igdas essentially

distinguished.

Corollary 4.16: Let M be a scalar (or acyclic) principally quasi-injgetR-module and be a maximal ideal of

R. Ifann, (1) is a cogenerator for MoR-andE (ann, (I )) is compressible, thed is essentially distinguished.

Proof: Let | be a maximal ideal oR By hypothesis,anny, () is a cogenerator for Mo®; therefore
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E(anny (1)) is also a cogenerator for Mdrj-{12], and hence the result follows by proposit{dri5s).

Proposition 4.17 If M is an essentially distinguish&module and is a maximal ideal oR, then every finitely

generated(projective or multiplicatioRYymodule is dualizable with respectdan,, ().

Proof: Let N be a finitely generate8-module and LeK be a maximal submodule Nf ThenN /K is a simpleR-
module. ButM is essentially distinguished implies that theréstsxa monomorphism saf: N/K — anny (1) (by
proposition 4.10), and henger € Hom(N, anny (I ))wherem: N - N /K is the natural homomorphism. fft = 0, then
0 = fr(N) = f(N/K ) implies thatN /K = 0 and henc& = N which is a contradiction.

Proposition 4.18:Let M be a scalar (a cyclic) principally quasi-injectRenodule and be a maximal ideal dR.
If every finitely generated (projective or multigdition) R-moduleisdualizable with respectaton, (1), then M is

essentially distinguished.

Proof: Let p be a simpleR-module. ThenP =~ R/I for some maximal ideal of R. By hypothesis
Homg(P,anny (1)) # 0. Let f: P = anny, (1) bea non-trivial homomorphism. Théns a monomorphism. Therefore
anny (1) contains a copy d? which implies thainn,, (1) # 0. Next we proceed as in the proof of propositiorl @} to
prove thatnn, (1) <, M.

We can summarize the characterizations of essigntiistinguishedness as in the following theorem.

Theorem 4.19:Let M be a scalar (cyclic) principally quasi-injectiRemodule and let be a maximal ideal d®. Then

the following statements are equivalent:

* M s essentially distinguished.

* anny( 1) Contains a copy of every simgRemodule.

* E(anny(1))ls a cogenerator for MoR-Provided thatE (ann,, (I ))is compressible.

» Every finitely generated (or projective or multgdtion)R-module is dualizable with respectdan,, ().
5. ESSENTIALLY DISTINGUISHED RINGS
In this section we consider the ring$or which theR-moduleR is essentially distinguished.

Definition 5.1: A ring Ris called essentially distinguisheduifng, (1) <, R for each maximal idedlof R.

Remarks and Examples 5.2

1. Every essentially distinguished ring is distingaigdhbut the converse is not true in general. Thioviahg

example shows: A ring, is distinguished but not essentially distinguished
2. If pis a prime number andis a positive integer then the ridgn is an essentially distinguished ring.
Proof: As in the proof of (2.2,4).

3. Every field is an essentially distinguished ringt Ibioe converse is not true in general, for instaigeis an

essentially distinguished ring which is not a field

4. Anintegral domain which is not a field is not egsaly distinguished (in fact not distinguished).
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5. Aring Ris essentially distinguished if and only if forcegproper ideal of R, annz (1) <, R.
Proof: As in the proof (2.2, 7).

6. Let f:R, - R, be a ring monomorphism. IR, is essentially distinguished, theR, is also essentially

distinguished.
Proof: Is similar to the proof of proposition (3.1).

7. Every subring of essentially distinguished ringliso essentially distinguished.

The direct sum of two (a finite family) essentiatlistinguished rings is essentially distinguished.
Proof: Is similar to the proof of proposition (3.4).

Proposition 5.3:Let R be a ring. If for each maximal idelabf R there exist® # a € R such tha(a) <, R and

I = anngz(a), thenRis essentially distinguished.
Proof: Is similar to the proof of proposition (4.1).

Corollary 5.4: LetR be a ring such thdta ) <, R for eacha € R. ThenR is essentially distinguished if and only
if Ris distinguished.

The following result is a partial converse for posjtion (5.3).

Proposition 5.5 Let R be a cogenerator ring. Kis essentially distinguished, then for each makioheal | of R,

there exist® # a € R such tha(a ) <, R andl = anni(a).

Proof: Let | be a maximal ideal oR. By [11]/ = anngz(a) for somed # a € R We have to show that
(a) <, R. Letd #t € R, then there exist® # r € R such thal # rt € anng (1 ). Hencet € anng(anng(a)), butRis

a co generator ring implies thatn, (anng(a)) = (a)[6], sort € (a) and hencgéa ) <. R.
For the next result the following lemma is needed.

Lemma 5.6:Let M be a finitely generated faithful multiplicatid®module and be a non-zero ideal & Then
I <, Rifand only ifIM <, M.

Proof: Suppose that<, R. LetN < M andN n IM = (0). AsM is a multiplicationR-module, thenv = JM for
some ideall of R So,(0) =JM nIM = (J nI) M (Since isM faithful multiplication), implies thaf n I = 0 which is a
contradiction. There fafM <, M.

Conversely suppose thatM <, M. LetL be an ideal oRandL NI = (0). Then(0) = (LNI)M =LM nIM

(SinceM is faithful multiplication). BuiM <, M, therefore a contradiction. Hentes, R.

The relationship between essentially distinguishied and essentially distinguished module in thassl of

multiplication modules is established in the follog/theorem:

Theorem 5.7:Let M be a finitely generated faithful multiplicatid®module. TherM is essentially distinguished
if and only ifR is essentially distinguished ring.

Proof: (=)If M is essentially distinguished, létbe a maximal ideal oR. Thenanny,(Il) <, M. Let N =

anny (I). ThenN = JM for some non-zero idedlof R, and by lemma (5.6), <, R. On the other hend it can be easily
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checked thatanny(I) = anng(I)M which gives thatnng(I) <, Rby lemma (5.6), and henc® is essentially
distinguished.

(<) Suppose thaR is essentially distinguished ring. Letbe a maximal ideal oR. Thenannz(I) <. R and hence
anng(1)M <, M (by lemma (5.6)). Buttnn,, (1) = anng(I )M, thereforeanny, (1) <., M and henceM is essentially
distinguished.

Corollary 5.8: Let M be a cyclic faithfulR-module. ThenM is essentially distinguished if and only Rf is

essentially distinguished.
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