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ABSTRACT 

Let R be a commutative ring with identity and M be a unitary (left) R-module. In this paper we present the 

concepts essentially distinguished module and essentially distinguished ring as generalizations of distinguished module and 

distinguished ring. M is called essentially distinguished R-module provided that ����(	�	) is an essential sub module of M 

for each maximal ideal I of R. R is called R-distinguished ring if R as an R-module is distinguished. The basic properties of 

such modules (rings) are studied. 

KEYWORDS:  Distinguished Module, Distinguished Ring, Essentially Distinguished Module, Essentially Distinguished 

Ring, Co Generator Ring, Principally Quasi-Injective Module 

1. INTRODUCTION 

Throughout this paper all rings are commutative with identity. An R-module M is called distinguished if 

����(	�	) ≠ 0 for each maximal ideal I of R, [7]. The notion of distinguished module was introduced by G. Azumaya in 

[7] in establishing a theory of quasi-Frobenius module In 1996, L. S. Mahmood studied the concepts of distinguished 

module and distinguished ring, [9]. In this paper we introduce essentially distinguished module and essentially 

distinguished ring as a generalization of distinguished module and distinguished ring. It turns out that the class of 

essentially distinguished modules (rings) contains properly the class of distinguished modules (rings), and that the two 

classes are equivalent in certain classes of modules (rings). Many characterizations of such modules and rings are 

established in this work.  

Notations: For an R-module M and an ideal I of R the set ����(	�	) = {	� ∈ �: �� = 0	���	���	� ∈ �	} is the 

annihilator of I in M, ����(	�	) = {	� ∈ �: �� = 0	���	���	� ∈ �	} is the annihilator of I in R, and for � ∈ �, ����(	�	) =
{	� ∈ �: �� = 0	} is the annihilator of m in R. 

2. ESSENTIALLY DISTINGUISHED MODULES  

It is know that a sub module a non-zero sub module N of an R-module M is called essential if � ∩ � ≠ 0 for each 

non-zero sub module K of M, equivalently N is an essential sub module of M if for each 0 ≠ � ∈ �, there exists � ∈ � 

such that 0 ≠ �� ∈ �, [5]. M is called a uniform module if every sub module of M is essential, [5]. We introduce the 

following concept: 

Definition 2.1. An R-module M is called essentially distinguished if ����(	�	) is an essential sub module of M 

(notation ally, ����(	�	) ≤� � ) for each maximal ideal I of R. 

Remarks and Examples 2.2 

1. An essentially distinguished module is distinguished but not conversely. For example �� as a ��-module is 
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distinguished but not essentially distinguished since ���� (	2"	) = (	3"	) ≰� �� and ���� (3") = (	2"	) ≰� ��.  
2. A uniform module is essentially distinguished if and only if it is distinguished. 

3. �%& as a �%&-module is not essentially distinguished since (	2" ) is a maximal ideal in the ring �%& but����'((	2"	) =
(6"	) ≰� �%&. 

4. �*+ as a �*+-module is essentially distinguished for all prime number p and positive integer n, Since the ideals of 

the ring �*+ are:  

(,	-) ⊇ /,&"""0 ⊇ /,1"""0 ⊇	∙∙∙	⊇ /,34%""""""0 ⊇ (	,3"""") = (0"),	but(,	-) the only maximal ideal of �*+and ����5+(	,-) =
(	,34%""""""	) ≤� �*+. 

5. A torsion-free module is not essentially distinguished; in fact it is not distinguished. For instance each of 

�, 6, �⨁�, �⨁6, … as a Z-module is not essentially distinguished. 

6. �*8as a Z-module is not distinguished and hence not essentially distinguished, for if � = (9) be any maximal 

ideal of Z with q is a prime number, then ����58(9) = :���/�; , �<80 = = 0	>�	, ≠ 9
�;	>�	, = 9	?. 

7. An R-module M is essentially distinguished if and only if ���� 	(	�	) ≤� � for each proper ideal I of R. 

8. M is essentially distinguished R-module if and only if M is essentially distinguished � ����⁄ (	�	)-module. 

3. BASIC PROPERTIES OF ESSENTIALLY DISTINGUISHED MO DULES 

Proposition 3.1: Let �:� → Ḿ	be a monomorphism. If Ḿ is essentially distinguished then M is also essentially 

distinguished. 

Proof: Let I be a maximal ideal of R. Then���Ḿ(	�	) ≤� Ḿ. Let� = ���Ḿ(	�	), so � ≤� Ḿ and hence 

�4%(	�	) ≤� � [6]. We claim that	����(	�	) = �4%(	�	). Let C ∈ �4%(	�	) . Then C ∈ � and �(	C	) ∈ � and 

hence�(	C	)� = 0 = �(	C�	), But f is a monomorphism implies that C� = 0, therefore C ∈ ����(	�	). Hence�4%(	�	) ⊆
����(	�	). 

Now, IfC ∈ ����(	�	), then C� = 0 and �(	C�	) = �(	C	)� = 0 implies that�(	C	) ∈ 	 ���Ḿ	(	�	) = �, therefore 

C ∈ �4%(	�	). Thus����(	�	) ⊆ �4%(	�	) So ����(	�	) = 	 �4%(�) ≤� � which completes the proof. 

Corollary 3.2 

1. Every non-zero sub module of an essentially distinguished module is also essentially distinguished. 

2. Let �% ≃ �& be two R-modules. Then �% is essentially distinguished if and only if �& is so. 

Lemma 3.3: Let �% and �& be two R-modules and I be an ideal of R. Then 

����'⨁�((	�	) = ����'(	�	)	⨁����((	�	). 
Proof: Is straightforward and hence is omitted. 

Proposition 3.4: Let �% and �& be two essentially distinguished R-modules. Then �%⨁�& is also essentially 

distinguished 
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Proof: LetI be a maximal ideal ofR. Then ����'(	�	) ≤� �% and����((	�	) ≤� �&. Therefore 

����'(	�	)⨁����((	�	) ≤� �%⨁�&, [5]. According to lemma (3.3) we get ����'⨁�((	�	) ≤� �%⨁�&. Hence �%⨁�& is 

essentially distinguished. 

Corollary 3.5: The direct sum of a finite collection of essentially distinguished R-module is also essentially 

distinguished. 

Proposition 3.6: Let M bea finitely generated R-module and S be a multiplicatively closed subset of R such that 

� ∩ F = ∅ for each prime ideal I of R. Then M is essentially distinguished if and only if �H is essentially distinguished �H –
module. 

Proof: (⟹) Let �H be a prime ideal of �H. Then I is a prime ideal of R[10]. Hence ����(	�	) ≠ 0 (by hypothesis). 

But M isfinitely generatedimplies that (����(	�	))H = ����J(	�H	)[1]and hence ����J(�H) ≠ 0H[1]. On the other hand 

����(	�	) ≤� � and according to [12],we get that ����J(	�H) ≤� �H. Therefore �H is essentially distinguished �H- 
module. 

(⟸) Let I be a prime ideal of R. Then �H is a prime ideal of �H[10], and by hypothesis we 

have����J(	�H	) ≤� �H. Now, ����(	�	))H = ����J(	�H	) (since M is finitely generated), 

[1].Therefore	(����(	�	))H ≤� �Handby [11],����(	�	) ≤� �, which completes the proof. 

Corollary 3.7: Let M be a finitely generated R-module and p be a prime ideal of R. Then M is essentially 

distinguished R-module if and only if �* is essentially distinguished �* –module. 

Now, we discuss essentially distinguishedness on a cogenerator ring (A ring R is called a cogenerator ring if the 

R-module R is a cogenerator for Mod-R, that is every R-module can be embedded in a direct product of copies of R). 

Proposition 3.8: If R is a cogenertor ring, then every faithful uniform R-module is essentially distinguished. 

Proof: Follow from the fact that every faithful module over a cogenerator ring is distinguished [9], and by 

(2.1,(2)) the result follows. 

Corollary 3.9: If R is a quasi-Frobenuisring. Then every faithful uniform R-module is essentially distinguished. 

Proof: R being quasi-Frobenius implies that R is a co generator ring [3]. Hence we get the result by proposition 

(3.8). 

Corollary 3.10: If R is a co generator ring and M is a faithful R-module such that L(�)(the injective hull of M) is 

indecomposable then M is essentially distinguished. 

Proof: L(	�) being indecomposable implies that M is uniform[8], and then by proposition (3.8),M is essentially 

distinguished. 

Corollary 3.11: If R is a cogenerator ring and M is a faithful R-module which has exactly two closed submodules, 

then M is essentially distinguished. 

Proof: As M has exactly two closed submodules implies that M is uniform [8], so M is essentially distinguished 

by proposition (3.8). 
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Corollary 3.12: If R is acogenertor ring and M is a faithful quasi-injective indecomposable R-module, then M is 

essentially distinguished. 

Proof: Since M is quasi-injective and indecomposable implies that M is uniform [8]and hence essentially 

distinguished by proposition(3.8). 

Corollary 3.13: If R is a cogenerator ring and M be a faithful indecomposable and extending R-module, then M is 

essentially distinguished. 

Proof: M being extending and indecomposable gives M is uniform [15] and according to proposition (3.8), M is 

essentially distinguished. 

Remark 3.14: The condition R is a cogenerator ring in proposition (3.8) and corollary (3.12) cannot be dropped. 

For instance 6 as a Z –module is faithful and uniform, however it is not essentially distinguished in fact it is not 

distinguished, note that the ring Z is not a cogenerator ring. On the other hand6 is an injective and hence quasi-injective    

Z-module, and that it is indecomposable. 

4. SOME CHARACTERIZATIONS OF ESSENTIALLY DISTINGUIS HED MODULE  

Many interesting characterizations of essentially distinguished modules in certain classes of modules are given in 

this section. 

Proposition 4.1: Let M be an R-module. If for each maximal ideal I of R, there exists 0 ≠ � ∈ � such 

that(�) ≤� � and � = ����(�), thenM is essentially distinguished. 

Proof: Let I be a maximal ideal of R. By hypothesis � = ����(	�	) for some 0 ≠ � ∈ � and (	�	) ≤� �. There 

for �� = 0 and hence � ∈ ����(	�	) which implies that (	�	) ≤ ����(	�	). As (	�	) ≤� � gives����(	�	) ≤� � [5]. 

Therefore M is essentially distinguished. 

Remark 4.2The condition (	�	) ≤� � in proposition (4.1) cannot be dropped. For example: ��as a��-module is 

notan essentially distinguished. Note that���� (2") = (3") ≰� �� and ���� (3") = (2") ≰� ��. 
Corollary 4.3: LetMbe an R-module such that (�) ≤� � for each 0 ≠ � ∈ �. Then M is essentially 

distinguished if and only if M is distinguished. 

In order to give a partial converse for proposition (4.1), the following areneeded 

Lemma 4.4: Let M be an R-module such that L�M�(	�	) = F ≃ �. If F� ⊆ F� with �, � ∈ � and F� =
{	�(	�	): � ∈ F	}, then �� ⊆ �� . 

Proof: LetN: � → F be an isomorphism. For each� ∈ �, N(�) = NO: � → � and NO(�) = �� for all � ∈ �. 

Clearly NO ∈ F and NO(�) ∈ F�. Hence NO(�) ∈ F3 (since F� ⊆ F� by hypothesis) Therefore NO(�) = �(�) for some 

� ∈ F, and hence � = N(P) for some P ∈ � (since S ≃	R), on the other hand N(P) = NQ gives �(�) = NQ(�) for all � ∈ �. 

So �� = NO(�) = NQ(�) = P� for all � ∈ �.implies thatRm ⊆ Rn 

Recall that an R-module M is called principally injective if each R-homomorphism U ∶ �� ⟶ � such that � ∈ �, 

extends to R , [14].And M is called principally quasi- injective if for each � ∈ � each homomorphism �: �� → � can be 

extended to an endomorphism of M, [13]. 
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Proposition 4.5[13]: Let M be an R-module andF = L�M�(�). Then the following statements are equivalent: 

1. M is principally quasi- injective. 

2. ����(	����(	�	)) = FX For all � ∈ �. 

3. If ����(�) ⊆ ����(�) where �,� ∈ �, then F3 ⊆ FX . 

4. For each	� ∈ �, if U, Y: �� → � with Y is a monomorphism, then there exists Z ∈ F such that Z ∘ Y = U	.  
Now, we present a partial converse for proposition (4.1). 

Proposition 4.6: Let M be a principally quasi-injective R-module and L�M�(�) = F ≃ �. If M is essentially 

distinguished then for each maximal ideal I of R there exists � ∈ � such that (�) ≤� � and � = ����(�). 
Proof: Let I be a maximal ideal of R. Then by [11], there exists 0 ≠ � ∈ � such that� = ����(�). It is left to 

show that(�) ≤� �. Let0 ≠ C ∈ �. As M is essentially distinguished, then ����(	�	) ≤� �,therefore there exists � ∈ � 

such that 0 ≠ �C ∈ ����(	�	). Hence ��C = 0 implies that� ⊆ ����(	�C	),	therefore����(�) ⊆ ����(�C)and according 

to proposition (4.5,(3)) we get F�C ⊆ F� and by lemma (4.4) implies that��C ⊆ ��, therefore�C ∈ (�) Whichis what we 

wanted. 

Theorem 4.7: Let M be a principally quasi-injective R-module such that L�M�(	�	) ≃ �.Then M is essentially 

distinguished if and only if for each maximal ideal I of R, there exists 0 ≠ � ∈ � such that (�) ≤� � and � = ����(�). 
Proof: Follows from propositions (4.1) and (4.6). 

Corollary 4.8: Let M be a faithful scalar and principally quasi-injective R-module. Then M is essentially 

distinguished if and only if for each maximal ideal I of R there exists � ∈ � such that (�) ≤� � and � = ����(�). 
Proof: M being faithful R-module gives L�M�(�) ≃ �[4]. Hence the result follows from theorem (4.7). 

Proposition 4.9: If M is an essentially distinguished R-module, then for each maximal ideal I of R, ����(	�	) 
contains a copy of every simple R-module. 

Proof: Let P be a simple R-module. Then \ ≃ � �⁄  for some maximal ideal I of R. M is distinguished gives that M 

contains a copy of P [9]. So there exists a monomorphism say �: \ → �. Let 0 ≠ C ∈ \ and put �(C) = �, with0 ≠ � ∈
�. But����(	�	) ≤� � implies there exists � ∈ � such that 0 ≠ �� ∈ ����(	�	), �	� = ��(C) = �(	�C	) ∈ ����(	�	). 
hence0 = ��(	�C	) = �(	��C	), therefore ��C = 0, gives �C ∈ ����(	�	).Hence(0) ≠ (	�C	) ⊆ ����(	�	). On the other 

hand (	�C	) ≤ \ and P is simple implies that\ = (	�C	) ⊆ ����(	�	) which completes the proof. 

A partial converse of proposition (4.9) is establish in the following proposition. 

Proposition 4.10: Let M be a scalar and principally quasi-injective R-module. If for each maximal ideal I of R, 

����(	�	) contains a copy of every simple R-module, then M is essentially distinguished. 

Proof: Let I be a maximal ideal of R. By hypothesis, ����(	�	) contains a copy of � �⁄ , so ����(	�	) ≠ 0 and 

hence M is distinguished. We have to show that����(	�	) ≤� �. Let 0 ≠ C ∈ ����(	�	) and let A be a maximal 

submodule of Rx. Then �C ]⁄  is a simple R-module Let	�: �C ] → ����⁄ (	�	) be a monomorphism. Define ^: �C → � by 

^(�) = �(� + ]) for all � ∈ �C. As M is principally quasi-injective implies that there exists a homomorphism ℎ:� →
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� such that ℎ ∘ > = ^. Where >: �C → � is the inclusion homomorphism. On the other hand M is a scalar R-module 

implies that there exists P ∈ � such that ℎ(�) = P� for all � ∈ �[2]. Therefor for all	� ∈ �C, ^(�) = �(� + ]) =
ℎ(�) = P�. Thus PC = �(C + ]) ≠ 0. For if �(C + ]) = 0	gives C + ] = ] and hence�C = ]	which is a contradiction.  

Now, P�C = ^(�C) = �(�C + ]) = ��(C + ]) = 0. So, P�C = 0 = �PC implies that PC ∈ ����( I ) and hence 

����(	�	) ≤� �. 

Corollary 4.11: Let M be a cyclic and principally quasi-injective R-module. Then M is essentially distinguished if 

and only if for each maximal ideal I of R, ����(	�	)contains a copy of every simple R-module. 

Proof: Follows from the two proposition 4.9, 4.10 and from the fact that every cyclic module is a scalar module 

[2]. 

In the following proposition we introduce a necessary condition for essentially distinguishedness by using the 

concept of injective hull of a module. 

Proposition 4.12: Let M be an essentially distinguished R-module. ThenL(����(�)) (the injective hull of 

����(�))is a cogenerator for Mod-R for each maximal ideal I of R. 

Proof: Let I be a maximal ideal of R. Then ����(	�	) contains a copy of every simple R-module(by 

proposition4.10). But����(	�	) ⊆ L(����(	�)), thereforeL/����(	�	)0 contains a copy of every simple R-module, and 

since L(����(	�	)) is an injective R-module, therefore L(����(	�	)) is a cogenerator for Mod-R.[6] 

Corollary 4.13: If M is an essentially distinguished R-module, then E(M) is a cogenerator for Mod-R. 

Proof: Let I be a maximal ideal of R. Then����(	�	) ≤� �and henceL/����(	�	)0 = L(�)[12], therefore E(M) 

is a cogenerator for Mod-R proposition 4.12. 

Corollary 4.14: Let M be an essentially distinguished R-module, andI be a maximal ideal of R. If����(�) is an 

injectiveR-module, then����(�)is acogenerator for Mod-R. 

Proof: Follows from proposition (4.12) and from the fact that L(�) = � if and only if M is injective [6]. 

A partial converse of proposition (4.12) is provided proposition by the following proposition: 

Proposition 4.15: Let M be a scalar (or a cyclic) principally quasi-injective R-module. If for each maximal ideal I 

of R, L(����(	�	)) is compressible and a cogenerator for Mod-R, then M is essentially distinguished 

Proof: LetI be a maximal ideal of R. By hypothesis L/����(	�	)0 is a cogenerator for Mod-R, on the other hand it 

is an injective R-module implies thatL(����(	�	)) contains a copy of every simple R-module [12]. But L/����(	�	)0 is 

compressible and ����(	�	) ≤ L(����(	�	) implies that there exists a monomorphism say �: L(����(	�	)) → ����(	�	). 
Therefore����(	�	) contains a copy of every simple R-module and according to proposition (4.10)we get M is essentially 

distinguished. 

Corollary 4.16: Let M be a scalar (or acyclic) principally quasi-injective R-module and I  be a maximal ideal of 

R. If����(	�	) is a cogenerator for Mod-R and L(����(	�	)) is compressible, then M is essentially distinguished. 

Proof: Let I be a maximal ideal of R. By hypothesis, ����(	�	) is a cogenerator for Mod-R, therefore 
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L(����(	�	)) is also a cogenerator for Mod-R, [12], and hence the result follows by proposition (4.15). 

Proposition 4.17: If M is an essentially distinguished R-module and I is a maximal ideal of R, then every finitely 

generated(projective or multiplication) R-module is dualizable with respect to ����(	�	). 
Proof: Let N be a finitely generated R-module and Let K be a maximal submodule of N. Then � �⁄  is a simple R-

module. But M is essentially distinguished implies that there exists a monomorphism say �:� � → ����(	�	)⁄  (by 

proposition 4.10), and hence �a ∈ :��(�, ����(	�	))where a:� → � �⁄  is the natural homomorphism. If �a = 0, then 

0 = �a(�) = �(� �	⁄ ) implies that � �⁄ = 0" and hence � = � which is a contradiction.  

Proposition 4.18: Let M be a scalar (a cyclic) principally quasi-injective R-module and I be a maximal ideal of R. 

If every finitely generated (projective or multiplication) R-moduleisdualizable with respect to����(	�	), then M is 

essentially distinguished. 

Proof: Let p be a simple R-module. Then \ ≃ � �⁄  for some maximal ideal I of R. By hypothesis 

:���(\, ����(	�	)) ≠ 0. Let �: \ → ����(	�	) bea non-trivial homomorphism. Then f is a monomorphism. Therefore 

����(	�	) contains a copy of P which implies that����(	�	) ≠ 0. Next we proceed as in the proof of proposition (4.10) to 

prove that����(	�	) ≤� �.  

We can summarize the characterizations of essentially distinguishedness as in the following theorem. 

Theorem 4.19: Let M be a scalar (cyclic) principally quasi-injective R-module and let I be a maximal ideal of R. Then 

the following statements are equivalent: 

• M is essentially distinguished. 

• ����(	�	) Contains a copy of every simple R-module. 

• L(����(	�	))Is a cogenerator for Mod-R Provided that		L(����(	�	))is compressible. 

• Every finitely generated (or projective or multiplication) R-module is dualizable with respect to ����(	�	). 
5. ESSENTIALLY DISTINGUISHED RINGS 

In this section we consider the rings R for which the R-module R is essentially distinguished. 

Definition 5.1: A ring R is called essentially distinguished if ����(	�	) ≤� � for each maximal ideal I of R. 

Remarks and Examples 5.2 

1. Every essentially distinguished ring is distinguished but the converse is not true in general. The following 

example shows: A ring �� is distinguished but not essentially distinguished. 

2. If p is a prime number and n is a positive integer then the ring �*+ is an essentially distinguished ring. 

Proof: As in the proof of (2.2,4). 

3. Every field is an essentially distinguished ring but the converse is not true in general, for instance, �b is an 

essentially distinguished ring which is not a field. 

4. An integral domain which is not a field is not essentially distinguished (in fact not distinguished). 
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5. A ring R is essentially distinguished if and only if for each proper ideal I of R, ����(	�	) ≤� �. 

Proof: As in the proof (2.2, 7). 

6. Let �: �% → �& be a ring monomorphism. If �& is essentially distinguished, then �% is also essentially 

distinguished. 

Proof: Is similar to the proof of proposition (3.1). 

7. Every subring of essentially distinguished ring is also essentially distinguished. 

8. The direct sum of two (a finite family) essentially distinguished rings is essentially distinguished. 

Proof: Is similar to the proof of proposition (3.4). 

Proposition 5.3: Let R be a ring. If for each maximal ideal I of R there exists	0 ≠ � ∈ � such that (	�	) ≤� � and 

� = ����(	�	), then R is essentially distinguished. 

Proof: Is similar to the proof of proposition (4.1). 

Corollary 5.4: Let R be a ring such that (	�	) ≤� � for each � ∈ �. Then R is essentially distinguished if and only 

if R is distinguished. 

The following result is a partial converse for proposition (5.3). 

Proposition 5.5: Let R be a cogenerator ring. If R is essentially distinguished, then for each maximal ideal I of R, 

there exists 0 ≠ � ∈ � such that (	�	) ≤� � and � = ����(	�	). 
Proof: Let I be a maximal ideal of R. By [11],� = ����(	�	) for some	0 ≠ � ∈ � We have to show that 

(	�	) ≤� �. Let0 ≠ P ∈ �, then there exists 0 ≠ � ∈ � such that0 ≠ �P ∈ ����(	�	). Hence�P ∈ ����(����(	�	)), but R is 

a co generator ring implies that ����(����(	�	)) = (�)[6], so �P ∈ (	�	) and hence(	�	) ≤� �. 

For the next result the following lemma is needed. 

Lemma 5.6: Let M be a finitely generated faithful multiplication R-module and I be a non-zero ideal of R. Then 

� ≤� � if and only if �� ≤� �. 

Proof: Suppose that� ≤� �. Let � ≤ � and � ∩ �� = (0). As M is a multiplication R-module, then � = c� for 

some ideal J of R So, (0) = c� ∩ �� = (	c ∩ �)	�	(Since is M faithful multiplication), implies that c ∩ � = 0 which is a 

contradiction. There for �� ≤� �. 

Conversely, suppose that �� ≤� �. Let L be an ideal of R and d ∩ � = (0). Then (0) = (	d ∩ �	)� = d� ∩ ��		 
(Since M is faithful multiplication). But �� ≤� �, therefore a contradiction. Hence � ≤� �. 

The relationship between essentially distinguished ring and essentially distinguished module in the class of 

multiplication modules is established in the following theorem: 

Theorem 5.7: Let M be a finitely generated faithful multiplication R-module. Then M is essentially distinguished 

if and only if R is essentially distinguished ring. 

Proof: (⟹)If M is essentially distinguished, let I be a maximal ideal of R. Then ����(	�	) ≤� �. Let � =
����(�). Then � = c� for some non-zero ideal J of R, and by lemma (5.6), c ≤� �. On the other hend it can be easily 
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checked that ����(�) = ����(�)� which gives that����(�) ≤� �by lemma (5.6), and hence R is essentially 

distinguished. 

(⟸) Suppose that R is essentially distinguished ring. Let I be a maximal ideal of R. Then ����(	�	) ≤� � and hence 

����(	�	)� ≤� � (by lemma (5.6)). But ����(	�	) = ����(	�	)�, therefore ����(	�	) ≤� � and hence M is essentially 

distinguished. 

Corollary 5.8: Let M be a cyclic faithful R-module. Then M is essentially distinguished if and only if R is 

essentially distinguished. 
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